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We present evidence that the performance of the traditional fully connected 
Hopfield model can be dramatically improved by carefully selecting an informa- 
tion-specific connectivity structure, while the synaptic weights of the selected 
connections are the same as in the Hopfield model. Starting from a completely 
disconnected network we let "genuine" Hebbian synaptic connections grow, one 
by one, until a desired degree of stability is achieved. Neural pathways are thus 
fixed not before, but durh~g the learning phase. 
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INTRODUCTION 

Successful performance of a particular neural network model with appli- 
cation potential depends crucially on the designer's ability to choose a 
suitable connectivity structure, the arrangement of nodes and patterns of 
connections, adapted to a context-dependent task. Though a variety of 
learning algorithms for optimal network design have been proposed in 
recent years, ~-3) many common models are based on fixed connectivity 
structures, necessarily far from being optimal. However, it seems con- 
ceivable that, particularly for large neuronal assemblies, sparse and highly 
specific connectivity structures have to be designed with great care and 
ingenuity. On one hand, a network model should have a minimal degree of 
connectivity; on the other, it should achieve a maximal retrieval quality. 
Hence, a delicate tradeoff between economical interconnectivity and high 
network performance emerges. 
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1. STABILITY OF THE COMPLETELY CONNECTED NETWORK 

Let us consider a set of N binary model units described by the state 
variables al only capable to take the value + 1 or - 1  corresponding to 
states of "high" or "low" activity, respectively. The connectivity structure 
for each individual unit i is such that each neuron i receives input from K i 
other units with 1 ~< K; ~< N -  1 such that self-interactions are excluded. The 
dynamical time evolution of the system in discrete time steps is then given 
by the prescription 

K~ 

~i( t+  1)=sgn ~ cu,,iGj, u~(t), i=1  ..... N (1.1) 
/ = 1  

In order to embed a set of p = ~N prescribed N-dimensional binary 
patterns of activity {S 1 ..... SP}, taking the values S~= + I  with equal 
probability, as fixed points of the dynamics (1.1), Hopfield ~'~ suggested a 
completely connected network equipped with symmetrical couplings given 
by the Hebbian prescription 

p 

H El, Sp c o. ~ (1.2) ---- - - i  ~ j  

p =  1 

Note, however, that Hopfield's dynamical time evolution is stochastic, 
in contrast to the deterministic and synchronous dynamics defined in 
Eq. (1.1). Furthermore, due to incomplete connectivity the connectivity 
matrix C = (c,..i) is in general no longer symmetric. Our minimal condition 
for successful information storage is that all p .  N spherically normalized 
stability parameters K0,, defined by 

~'o, = S~' ~" co, c?, (1.3) 
I = I t \ l =  1 

be larger than zero, while their individual magnitude can be considered as 
a measure for the embedding strength of the ith component of pattern p. 
Since the probability distribution p(K) of the stability parameters Ko, is a 
Gaussian distribution centered at the mean value ~= 1/v/~ and variance 
unity, the probability of finding a stability parameter larger than a 
prescribed value i,- is obtained by integrating the probability distribution 
P(~'), 

1[ + e r f ( &  ( & - x ' ~ ]  (1.4) P(KO,>K)=f]  p(y) dT=g 1 \ x / 2 k x / =  / / /  

with the usual definition of the error function erf(x)= (2/x/~) Ji~ exp(-t '-)  dt. 
The probability that for fixed i all p of the K0, be larger than K is then 
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Fig. 1. Theoretic Pmin(N, cx, 0) as a function of~ for N =  50, 100, 200, and 10,000 (from right 
to left). 

[ P ( K o , > K ) ] P .  Hence, the probability of finding at least one too, smaller 
than or equal to K is given by 

Pmin(N, c(, K ) =  1 - [P0r > K] ~N (l.5) 

For the crucial case K =0,  Pmin(N, 0q 0) gives the fraction of not success- 
fully embedded patterns with respect to component i. Figure 1 depicts this 
quantity for various numbers N in the Hopfield case. 

The fraction of negative minimal stability parameters h-0, given by 
Eq. (1.5) increases monotonically with increasing load parameter ~. Note, 
however, that even for small values of ~, Pmi,(N, ~, 0) never takes the value 
zero such that there is always a finite chance that a microscopic fraction of 
patterns violates the embedding condition for fixed i. Hence we tolerate a 
fraction of negative minimal stability parameters not exceeding 3% and 
find critical values c~(50)=0.14 ,  %n(100)=0.13, ~ ( 2 0 0 ) = 0 . 1 1 ,  and 
~(10,000)  = 0.065. Thus, with increasing N the critical ~ ( N ) ,  i.e., the 
onset of macroscopic instability, shifts to smaller values of a, while 
Pm~,(N, ~, 0) eventually approaches a step function, taking only the value 
0 for c~ = 0 and the value 1 otherwise. 

2. PARTIAL CONNECTIVITY STRUCTURES 

We now focus on improving the performance of the fully connected 
Hopfield network model measured by the fraction of negative minimal 
stability parameters as given in Eq. (1.5) and visualized in Fig. 1. Our 
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intention is to reduce the number of connections, while the values of the 
surviving weights are still specified by Eq. (1.2). Thus learning can be 
viewed as adapting the network architecture to a context-dependent task 
rather than fine tuning the values of the couplings. In fact, for sparsely 
connected networks it is conceivable that the choice of an appropriate 
connectivity structure is of high priority. In this spirit we start from a com- 
pletely disconnected network and let the number of connections grow until 
a desired value of the cost function 

E(Ki, j t ( i ) , j2(i)  ..... jKi ( i ) )=minOco, )=min  S~' ~ cij, (2.1) 
I ~ = 1  I t = l  \ I = 1  

is achievedJ 4' 5~ Alternatively one could also maximize (2.1). Note that the 
choice of the cost function (2.1) consistent with Eq. (1.5) assigns a measure 
for the embedding strength of the "weakest" pattern with respect to com- 
ponent i. 

Assuming that the units are arranged in arbitrary, but fixed order, a 
general recipe for the construction of the connectivity structure of unit i is 
as follows: 

1. Start with an arbitrary unit labeled j~(i) that serves as the first 
neuron feeding input to unit i; 

2. If unit i is already partially connected to s other units labeled as 
jl(i),-.., j,(i) (s < N -  1), the first unit of the remaining N -  1 - s "trial" 
neurons that successfully fulfills the stability test 

E(s + 1, j ,(i),  j,_(i) ..... js(i), Jtrial(i)) 

> E(s, j~(i), J2(i) ..... Js(i)) (2.2) 

joins the current members of the partially connected network. If all trial 
units fail, accept an arbitrary unit of the current trial set. 

3. Stop when the cost function (2.1) exceeds or equals a prescribed 
stability value K > 0. Otherwise go back to step 2. 

Since process 1-3 has to be performed for each unit i the construction 
of a partially connected network where Ki units are connected to unit i 
demands at most ZY=l ( N - 1 - K i / 2 )  x ( K  i -  1) comparisons (2.2). 

3. C O M P U T E R  S I M U L A T I O N S  

Evidently the network structure resulting from our deterministic recipe 
may strongly depend on the sequential order of the units. Hence we study 
the dependence on random order (strategy A) and the order according to 
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Fig. 2. Fraction of negative minimal stabilities as a function of oc for a fully connected 
network (coincides with theory), selective connectivity according to strategy A and selective 
connectivity according to strategy B (from right to left). 

the magnitude of the Hebbian couplings (strategy B). Figure 2 depicts the 
overall performance of our selectively connected networks for both learning 
strategies and N =  100 neurons. For comparison we add the theoretical 
prediction (1.5) for the completely connected network which coincides 
with our computer experiments. Tolerating a total error of 3% percent, 
we find the remarkable feature that the number of patterns which can be 
successfully embedded is about three times lower for the traditional fully 
connected Hopfield model ~p(100)=0.13 than for the selectively con- 
structed network models. To be more precise, the critical values of c~ shift 
to c%n(100)= 0.37 and ,~( I00) - -0 .39  for strategy A and strategy B, respec- 

H N B tively. We note that the shift of the critical load parameters ~,. ( ) - e , . ( N )  
does not show a sensitive dependence on N up to N = 200, though we have 
to expect deviations for larger values of N, since our problem is presumably 
NP-complete. 

During the following computer experiments we fix the number of units 
N as well as the load parameter c~ and stop our procedure when the cost 
function (2.1) attains it maximal value. For N =  I00 and e = 0 . 3  we find 
average minimal stability values ( h A ) = 0 . 5 5 7  and (XB)=0 .726  for 
strategy A and strategy B, respectively. The distribution of the selected 
couplings for both strategies is shown in Fig 3. For comparison we add the 
nearly binomial distribution of the full set of Hebbian couplings before the 
selection process. 
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Fig. 3. Distribution of the weights beJbre (circles) and after the selection process for N = 100, 
load parameter a =  0.30, and fully opt~nized x for strategy A (crosses) and strategy B (stars). 

For strategy B we observe some fluctuations (structure) in the region 
of low weights due to the special rearrangement of the candidates. By 
contrast, strategy A based on random order reveals a close to binomial 
shape similar to the completely connected model. Note that the fraction of 
zero couplings increases from 0.153 to 0.386 and 0.568 after application of 

Fig. 4. 
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strategy A and strategy B, respectively. Hence, the superiority of strategy 
B is twofold, leading to higher dilution as well as to better stability. 

The distribution of the acceptance rate of the Hebbian couplings is 
shown in Fig. 4. While strategy B evidently favors the acceptance of almost 
all high weights, the acceptance rate for the smaller weights decreases 
almost linearly with the magnitude of the Hebbian weights. By contrast, 
the acceptance rate for strategy A can be approximated by a parabola 
favoring the high as well as very low weights. 

4. OUTLOOK 

We have seen that network architectures can be adapted to a specific 
pattern set with the aid of a simple deterministic step-by-step strategy such 
that with half as many couplings we could store three times more patterns. 

Evidently, our search strategy for optimal network structures can be 
greatly improved. To this end genetic algorithms may be fruitful. A family 
of genotypes can naturally be specified by all ( N - 1 ) !  permutations of 
the lexicographic arrangement of the potential connectivity candidates. 
A deterministic procedure for the construction of the corresponding pheno- 
types as well as the introduction of a fitness function that measures how 
well a phenotype performs have been presented in this work. 
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